Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Biomedicines ; 11(5)2023 May 17.
Article in English | MEDLINE | ID: covidwho-20236954

ABSTRACT

COVID-19 vaccines have been widely used to reduce the incidence and disease severity of COVID-19. Questions have lately been raised about the possibility of an association between COVID-19 vaccines and myocarditis, an inflammatory condition affecting the myocardium, or the middle layer of the heart. Myocarditis can be caused by infections, immune reactions, or toxic exposure. The incidence rate of myocarditis and pericarditis was calculated to be 5.98 instances per million COVID-19 vaccine doses delivered, which is less than half of the incidences after SARS-CoV-2 infection. Myocarditis rates in people aged 12 to 39 years are around 12.6 cases per million doses following the second dose of mRNA vaccination. Adolescent men are more likely than women to develop myocarditis after receiving mRNA vaccines. The objectives of this systematic review and meta-analysis are to find out how often myocarditis occurs after receiving the COVID-19 vaccine, as well as the risk factors and clinical repercussions of this condition. Nevertheless, the causal relationship between vaccination and myocarditis has been difficult to establish, and further research is required. It is also essential to distinguish between suggested cases of myocarditis and those confirmed by endomyocardial biopsy.

2.
Inflammation ; 2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-2251267

ABSTRACT

Hyper-transmissibility with decreased disease severity is a typical characteristic of the SARS-CoV-2 Omicron variant. To understand this phenomenon, we used various bioinformatics approaches to analyze randomly selected genome sequences (one each) of the Gamma, Delta, and Omicron variants submitted to NCBI from December 15 to 31, 2021. We report that the pathogenicity of SARS-CoV-2 variants decreases in the order of Wuhan > Gamma > Delta > Omicron; however, the antigenic property follows the order of Omicron > Gamma > Wuhan > Delta. The Omicron spike RBD shows lower pathogenicity but higher antigenicity than other variants. The reported decreased disease severity by the Omicron variant may be due to its decreased pro-inflammatory and IL-6 stimulation and increased IFN-γ and IL-4 induction efficacy. The mutations in the N protein are probably associated with this decreased IL-6 induction and human DDX21-mediated increased IL-4 production for Omicron. Due to the mutations, the stability of S, M, N, and E proteins decreases in the order of Omicron > Gamma > Delta > Wuhan. Although a stronger spike RBD-hACE2 binding of Omicron increases its transmissibility, the lowest stability of its spike protein makes spike RBD-hACE2 interaction weak for systemic infection and for causing severe disease. Finally, the highest instability of the Omicron E protein may also be associated with decreased viral maturation and low viral load, leading to less severe disease and faster recovery. Our findings will contribute to the understanding of the dynamics of SARS-CoV-2 variants and the management of emerging variants. This minimal genome-based method may be used for other similar viruses avoiding robust analysis.

3.
Future science OA ; 8(9), 2023.
Article in English | Europe PMC | ID: covidwho-2239681

ABSTRACT

SARS-CoV-2 was discovered in Wuhan, China and quickly spread throughout the world. This deadly virus moved from person to person, resulting in severe pneumonia, fever, chills and hypoxia. Patients are still experiencing problems after recovering from COVID-19. This review covers COVID-19 and associated issues following recovery from COVID-19, as well as multiorgan damage risk factors and treatment techniques. Several unusual illnesses, including mucormycosis, white fungus infection, happy hypoxia and other systemic abnormalities, have been reported in recovered individuals. In children, multisystem inflammatory syndrome with COVID-19 (MIS-C) is identified. The reasons for this might include uncontrollable steroid usage, reduced immunity, uncontrollable diabetes mellitus and inadequate care following COVID-19 recovery. Plain language summary COVID-19 infection has reported in the development several other infections and co-morbidity in patients. The present review discusses risk and management strategies in patients suffeting from co-infections caused by COVID-19 infection.

4.
Future Sci OA ; 8(9): FSO819, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2239679

ABSTRACT

SARS-CoV-2 was discovered in Wuhan, China and quickly spread throughout the world. This deadly virus moved from person to person, resulting in severe pneumonia, fever, chills and hypoxia. Patients are still experiencing problems after recovering from COVID-19. This review covers COVID-19 and associated issues following recovery from COVID-19, as well as multiorgan damage risk factors and treatment techniques. Several unusual illnesses, including mucormycosis, white fungus infection, happy hypoxia and other systemic abnormalities, have been reported in recovered individuals. In children, multisystem inflammatory syndrome with COVID-19 (MIS-C) is identified. The reasons for this might include uncontrollable steroid usage, reduced immunity, uncontrollable diabetes mellitus and inadequate care following COVID-19 recovery.


COVID-19 infection has reported in the development several other infections and co-morbidity in patients. The present review discusses risk and management strategies in patients suffeting from co-infections caused by COVID-19 infection.

6.
Vaccines (Basel) ; 11(2)2023 Jan 17.
Article in English | MEDLINE | ID: covidwho-2200967

ABSTRACT

According to the WHO, as of January 2023, more than 850 million cases and over 6.6 million deaths from COVID-19 have been reported worldwide. Currently, the death rate has been reduced due to the decreased pathogenicity of new SARS-CoV-2 variants, but the major factor in the reduced death rates is the administration of more than 12.8 billion vaccine doses globally. While the COVID-19 vaccines are saving lives, serious side effects have been reported after vaccinations for several premature non-communicable diseases (NCDs). However, the reported adverse events are low in number. The scientific community must investigate the entire spectrum of COVID-19-vaccine-induced complications so that necessary safety measures can be taken, and current vaccines can be re-engineered to avoid or minimize their side effects. We describe in depth severe adverse events for premature metabolic, mental, and neurological disorders; cardiovascular, renal, and autoimmune diseases, and reproductive health issues detected after COVID-19 vaccinations and whether these are causal or incidental. In any case, it has become clear that the benefits of vaccinations outweigh the risks by a large margin. However, pre-existing conditions in vaccinated individuals need to be taken into account in the prevention and treatment of adverse events.

7.
Cell Signal ; 103: 110559, 2023 03.
Article in English | MEDLINE | ID: covidwho-2158569

ABSTRACT

The COVID-19 pandemic has triggered intensive research and development of drugs and vaccines against SARS-CoV-2 during the last two years. The major success was especially observed with development of vaccines based on viral vectors, nucleic acids and whole viral particles, which have received emergent authorization leading to global mass vaccinations. Although the vaccine programs have made a big impact on COVID-19 spread and severity, emerging novel variants have raised serious concerns about vaccine efficacy. Due to the urgent demand, drug development had originally to rely on repurposing of antiviral drugs developed against other infectious diseases. For both drug and vaccine development the focus has been mainly on SARS-CoV-2 surface proteins and host cell receptors involved in viral attachment and entry. In this review, we expand the spectrum of SARS-CoV-2 targets by investigating the COVID-19 signalome. In addition to the SARS-CoV-2 Spike protein, the envelope, membrane, and nucleoprotein targets have been subjected to research. Moreover, viral proteases have presented the possibility to develop different strategies for the inhibition of SARS-CoV-2 replication and spread. Several signaling pathways involving the renin-angiotensin system, angiotensin-converting enzymes, immune pathways, hypoxia, and calcium signaling have provided attractive alternative targets for more efficient drug development.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , COVID-19 Vaccines/metabolism , Pandemics/prevention & control , Receptors, Virus/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
8.
Cell Signal ; 101: 110495, 2023 01.
Article in English | MEDLINE | ID: covidwho-2068757

ABSTRACT

The COVID-19 pandemic has been the focus of research the past two years. The major breakthrough was made by discovering pathways related to SARS-CoV-2 infection through cellular interaction by angiotensin-converting enzyme (ACE2) and cytokine storm. The presence of ACE2 in lungs, intestines, cardiovascular tissues, brain, kidneys, liver, and eyes shows that SARS-CoV-2 may have targeted these organs to further activate intracellular signalling pathways that lead to cytokine release syndrome. It has also been reported that SARS-CoV-2 can hijack coatomer protein-I (COPI) for S protein retrograde trafficking to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), which, in turn, acts as the assembly site for viral progeny. In infected cells, the newly synthesized S protein in endoplasmic reticulum (ER) is transported first to the Golgi body, and then from the Golgi body to the ERGIC compartment resulting in the formation of specific a motif at the C-terminal end. This review summarizes major events of SARS-CoV-2 infection route, immune response following host-cell infection as an important factor for disease outcome, as well as comorbidity issues of various tissues and organs arising due to COVID-19. Investigations on alterations of host-cell machinery and viral interactions with multiple intracellular signaling pathways could represent a major factor in more effective disease management.


Subject(s)
COVID-19 , Humans , Pandemics , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Cytokine Release Syndrome , Comorbidity
9.
Chem Biol Interact ; 365: 110050, 2022 Sep 25.
Article in English | MEDLINE | ID: covidwho-1966412

ABSTRACT

Asthma, COPD, COVID-19, EGPA, Lung cancer, and Pneumonia are major chronic respiratory diseases (or CRDs) affecting millions worldwide and account for substantial morbidity and mortality. These CRDs are irreversible diseases that affect different parts of the respiratory system, imposing a considerable burden on different socio-economic classes. All these CRDs have been linked to increased eosinophils in the lungs. Eosinophils are essential immune mediators that contribute to tissue homeostasis and the pathophysiology of various diseases. Interestingly, elevated eosinophil level is associated with cellular processes that regulate airway hyperresponsiveness, airway remodeling, mucus hypersecretion, and inflammation in the lung. Therefore, eosinophil is considered the therapeutic target in eosinophil-mediated lung diseases. Although, conventional medicines like antibiotics, anti-inflammatory drugs, and bronchodilators are available to prevent CRDs. But the development of resistance to these therapeutic agents after long-term usage remains a challenge. However, progressive development in nanotechnology has unveiled the targeted nanocarrier approach that can significantly improve the pharmacokinetics of a therapeutic drug. The potential of the nanocarrier system can be specifically targeted on eosinophils and their associated components to obtain promising results in the pharmacotherapy of CRDs. This review intends to provide knowledge about eosinophils and their role in CRDs. Moreover, it also discusses nanocarrier drug delivery systems for the targeted treatment of CRDs.


Subject(s)
Asthma , COVID-19 Drug Treatment , Asthma/drug therapy , Eosinophils , Humans , Lung , Nanotechnology
10.
Int J Mol Sci ; 23(14)2022 Jul 21.
Article in English | MEDLINE | ID: covidwho-1957345

ABSTRACT

The aim of this Special Edition is to highlight the exponential work performed in the field of antimicrobial material research from the beginning of the current COVID-19 pandemic [...].


Subject(s)
Anti-Infective Agents , COVID-19 Drug Treatment , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Humans , Pandemics
11.
Viruses ; 14(5)2022 04 27.
Article in English | MEDLINE | ID: covidwho-1875798

ABSTRACT

Since December 2019, the COVID-19 pandemic, which originated in Wuhan, China, has resulted in over six million deaths worldwide. Millions of people who survived this SARS-CoV-2 infection show a number of post-COVID complications. Although, the comorbid conditions and post-COVID complexities are to some extent well reviewed and known, the impact of COVID-19 on pre-existing congenital anomalies and genetic diseases are only documented in isolated case reports and case series, so far. In the present review, we analyzed the PubMed indexed literature published between December 2019 and January 2022 to understand this relationship from various points of view, such as susceptibility, severity and heritability. Based on our knowledge, this is the first comprehensive review on COVID-19 and its associations with various congenital anomalies and genetic diseases. According to reported studies, some congenital disorders present high-risk for developing severe COVID-19 since these disorders already include some comorbidities related to the structure and function of the respiratory and cardiovascular systems, leading to severe pneumonia. Other congenital disorders rather cause psychological burdens to patients and are not considered high-risk for the development of severe COVID-19 infection.


Subject(s)
COVID-19 , China , Comorbidity , Humans , Pandemics , SARS-CoV-2/genetics
12.
Epidemiologia (Basel) ; 3(2): 229-237, 2022 Apr 29.
Article in English | MEDLINE | ID: covidwho-1820216

ABSTRACT

The scientific, private, and industrial sectors use a wide variety of technological platforms available to achieve protection against SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), including vaccines. However, the virus evolves continually into new highly virulent variants, which might overcome the protection provided by vaccines and may re-expose the population to infections. Mass vaccinations should be continued in combination with more or less mandatory non-pharmaceutical interventions. Therefore, the key questions to be answered are: (i) How to identify the primary and secondary infections of SARS-CoV-2? (ii) Why are neutralizing antibodies not long-lasting in both cases of natural infections and post-vaccinations? (iii) Which are the factors responsible for this decay in neutralizing antibodies? (iv) What strategy could be adapted to develop long-term herd immunity? (v) Is the Spike protein the only vaccine target or is a vaccine cocktail better?

13.
Cell Signal ; 95: 110334, 2022 07.
Article in English | MEDLINE | ID: covidwho-1800158

ABSTRACT

Exosome trans-membrane signals provide cellular communication between the cells through transport and/or receiving the signal by molecule, change the functional metabolism, and stimulate and/or inhibit receptor signal complexes. COVID19 genetic transformations are varied in different geographic positions, and single nucleotide polymorphic lineages were reported in the second waves due to the fast mutational rate and adaptation. Several vaccines were developed and in treatment practice, but effective control has yet to reach in cent presence. It was initially a narrow immune-modulating protein target. Controlling these diverse viral strains may inhibit their transuding mechanisms primarily to target RNA genes responsible for COVID19 transcription. Exosomal miRNAs are the main sources of transmembrane signals, and trans-located miRNAs can directly target COVID19 mRNA transcription. This review discussed targeted viral transcription by delivering the artificial miRNA (amiRNA) mediated exosomes in the infected cells and significant resources of exosome and their efficacy.


Subject(s)
COVID-19 , Exosomes , MicroRNAs , Exosomes/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , SARS-CoV-2 , Signal Transduction
14.
Pathogens ; 11(2)2022 Feb 20.
Article in English | MEDLINE | ID: covidwho-1704988

ABSTRACT

COVID-19 is caused by a novel coronavirus (2019-nCoV), which was declared as a pandemic after it emerged in China 2019. A vast international effort has been conducted to prevent and treat COVID-19 due to its high transmissibility and severe morbidity and mortality rates, particularly in individuals with chronic co-morbidities. In addition, polymorphic variants increased the need for proper vaccination to overcome the infectivity of new variants that are emerging across the globe. Many treatment options have been proposed and more than 25 vaccines are in various stages of development; however, the infection peaks are oscillating periodically, which raises a significant question about the effectiveness of the prevention measures and the persistence of this pandemic disease. In this review, we are exploring the most recent knowledge and advances in the treatment and vaccination options as well as the new emerging variants of 2019-nCoV and the possible mitigation of one of the most aggressive pandemics in the last centuries.

15.
Int J Mol Sci ; 23(3)2022 Jan 21.
Article in English | MEDLINE | ID: covidwho-1650511

ABSTRACT

International interest in metal-based antimicrobial coatings to control the spread of bacteria, fungi, and viruses via high contact human touch surfaces are growing at an exponential rate. This interest recently reached an all-time high with the outbreak of the deadly COVID-19 disease, which has already claimed the lives of more than 5 million people worldwide. This global pandemic has highlighted the major role that antimicrobial coatings can play in controlling the spread of deadly viruses such as SARS-CoV-2 and scientists and engineers are now working harder than ever to develop the next generation of antimicrobial materials. This article begins with a review of three discrete microorganism-killing phenomena of contact-killing surfaces, nanoprotrusions, and superhydrophobic surfaces. The antimicrobial properties of metals such as copper (Cu), silver (Ag), and zinc (Zn) are reviewed along with the effects of combining them with titanium dioxide (TiO2) to create a binary or ternary contact-killing surface coatings. The self-cleaning and bacterial resistance of purely structural superhydrophobic surfaces and the potential of physical surface nanoprotrusions to damage microbial cells are then considered. The article then gives a detailed discussion on recent advances in attempting to combine these individual phenomena to create super-antimicrobial metal-based coatings with binary or ternary killing potential against a broad range of microorganisms, including SARS-CoV-2, for high-touch surface applications such as hand rails, door plates, and water fittings on public transport and in healthcare, care home and leisure settings as well as personal protective equipment commonly used in hospitals and in the current COVID-19 pandemic.


Subject(s)
Anti-Infective Agents/pharmacology , COVID-19/prevention & control , Coated Materials, Biocompatible/pharmacology , Metals/chemistry , Touch , Animals , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , COVID-19/transmission , Coated Materials, Biocompatible/chemical synthesis , Coated Materials, Biocompatible/chemistry , Humans , Pandemics , Personal Protective Equipment/microbiology , Personal Protective Equipment/virology , SARS-CoV-2/drug effects , Surface Properties , Viruses/drug effects
16.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: covidwho-1598089

ABSTRACT

The current global pandemic due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has taken a substantial number of lives across the world. Although few vaccines have been rolled-out, a number of vaccine candidates are still under clinical trials at various pharmaceutical companies and laboratories around the world. Considering the intrinsic nature of viruses in mutating and evolving over time, persistent efforts are needed to develop better vaccine candidates. In this study, various immuno-informatics tools and bioinformatics databases were deployed to derive consensus B-cell and T-cell epitope sequences of SARS-CoV-2 spike glycoprotein. This approach has identified four potential epitopes which have the capability to initiate both antibody and cell-mediated immune responses, are non-allergenic and do not trigger autoimmunity. These peptide sequences were also evaluated to show 99.82% of global population coverage based on the genotypic frequencies of HLA binding alleles for both MHC class-I and class-II and are unique for SARS-CoV-2 isolated from human as a host species. Epitope number 2 alone had a global population coverage of 98.2%. Therefore, we further validated binding and interaction of its constituent T-cell epitopes with their corresponding HLA proteins using molecular docking and molecular dynamics simulation experiments, followed by binding free energy calculations with molecular mechanics Poisson-Boltzmann surface area, essential dynamics analysis and free energy landscape analysis. The immuno-informatics pipeline described and the candidate epitopes discovered herein could have significant impact upon efforts to develop globally effective SARS-CoV-2 vaccines.


Subject(s)
COVID-19 Vaccines , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Molecular Docking Simulation , SARS-CoV-2 , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Vaccines, Subunit/chemistry , Vaccines, Subunit/immunology
17.
Additive Manufacturing ; : 102378, 2021.
Article in English | ScienceDirect | ID: covidwho-1446339

ABSTRACT

Fused deposition modelling (FDM) is an advanced 3D printing technique for the manufacture of plastic materials. The ease of use, prototyping accuracy and low cost makes it a widely used additive manufacturing technique. FDM creates 3D structures through the layer-by-layer melt-extrusion of a plastic filament. The production of a printed structure involves the generation of a digital design of the model by 3D design software and its execution by the printer until the complete model is reproduced. This review presents the current status of FDM, how to handle and operate FDM printers, industry standards of printing, the types of filaments that can be used, the post-processing treatments, advantages, and limitations as well as an overview of the increasing application fields of FDM technology. The application areas of FDM are endless, including biomedicine, construction, automotive, aerospace, acoustics, textiles, and occupational therapy amongst others. Even during the current Coronavirus disease (COVID-19) pandemic, FDM has helped to fabricate face masks, ventilators and respiratory systems, respiratory valves, and nasopharyngeal swabs for COVID-19 diagnosis. FDM 3D and 4D printing can produce polymeric and composite structures of various designs, and compositions in a range of materials according to the desired application. The review concludes by discussing the future prospects for FDM.

18.
Viruses ; 13(10)2021 09 25.
Article in English | MEDLINE | ID: covidwho-1438747

ABSTRACT

Recently, two cases of complete remission of classical Hodgkin lymphoma (cHL) and follicular lymphoma (FL) after SARS-CoV-2 infection were reported. However, the precise molecular mechanism of this rare event is yet to be understood. Here, we hypothesize a potential anti-tumor immune response of SARS-CoV-2 and based on a computational approach show that: (i) SARS-CoV-2 Spike-RBD may bind to the extracellular domains of CD15, CD27, CD45, and CD152 receptors of cHL or FL and may directly inhibit cell proliferation. (ii) Alternately, upon internalization after binding to these CD molecules, the SARS-CoV-2 membrane (M) protein and ORF3a may bind to gamma-tubulin complex component 3 (GCP3) at its tubulin gamma-1 chain (TUBG1) binding site. (iii) The M protein may also interact with TUBG1, blocking its binding to GCP3. (iv) Both the M and ORF3a proteins may render the GCP2-GCP3 lateral binding where the M protein possibly interacts with GCP2 at its GCP3 binding site and the ORF3a protein to GCP3 at its GCP2 interacting residues. (v) Interactions of the M and ORF3a proteins with these gamma-tubulin ring complex components potentially block the initial process of microtubule nucleation, leading to cell-cycle arrest and apoptosis. (vi) The Spike-RBD may also interact with and block PD-1 signaling similar to pembrolizumab and nivolumab- like monoclonal antibodies and may induce B-cell apoptosis and remission. (vii) Finally, the TRADD interacting "PVQLSY" motif of Epstein-Barr virus LMP-1, that is responsible for NF-kB mediated oncogenesis, potentially interacts with SARS-CoV-2 Mpro, NSP7, NSP10, and spike (S) proteins, and may inhibit the LMP-1 mediated cell proliferation. Taken together, our results suggest a possible therapeutic potential of SARS-CoV-2 in lymphoproliferative disorders.


Subject(s)
COVID-19/metabolism , Lymphoma/immunology , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , Antineoplastic Agents/pharmacology , Binding Sites , COVID-19/complications , Glycoproteins/metabolism , Glycoproteins/ultrastructure , Humans , Immunity/immunology , Lymphoma/therapy , Lymphoma/virology , Models, Theoretical , Molecular Docking Simulation , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/ultrastructure , Viroporin Proteins/metabolism , Viroporin Proteins/ultrastructure
19.
Environ Res ; 204(Pt B): 112092, 2022 03.
Article in English | MEDLINE | ID: covidwho-1433211

ABSTRACT

Various lineages of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have contributed to prolongation of the Coronavirus Disease 2019 (COVID-19) pandemic. Several non-synonymous mutations in SARS-CoV-2 proteins have generated multiple SARS-CoV-2 variants. In our previous report, we have shown that an evenly uneven distribution of unique protein variants of SARS-CoV-2 is geo-location or demography-specific. However, the correlation between the demographic transmutability of the SARS-CoV-2 infection and mutations in various proteins remains unknown due to hidden symmetry/asymmetry in the occurrence of mutations. This study tracked how these mutations are emerging in SARS-CoV-2 proteins in six model countries and globally. In a geo-location, considering the mutations having a frequency of detection of at least 500 in each SARS-CoV-2 protein, we studied the country-wise percentage of invariant residues. Our data revealed that since October 2020, highly frequent mutations in SARS-CoV-2 have been observed mostly in the Open Reading Frame (ORF) 7b and ORF8, worldwide. No such highly frequent mutations in any of the SARS-CoV-2 proteins were found in the UK, India, and Brazil, which does not correlate with the degree of transmissibility of the virus in India and Brazil. However, we have found a signature that SARS-CoV-2 proteins were evolving at a higher rate, and considering global data, mutations are detected in the majority of the available amino acid locations. Fractal analysis of each protein's normalized factor time series showed a periodically aperiodic emergence of dominant variants for SARS-CoV-2 protein mutations across different countries. It was noticed that certain high-frequency variants have emerged in the last couple of months, and thus the emerging SARS-CoV-2 strains are expected to contain prevalent mutations in the ORF3a, membrane, and ORF8 proteins. In contrast to other beta-coronaviruses, SARS-CoV-2 variants have rapidly emerged based on demographically dependent mutations. Characterization of the periodically aperiodic nature of the demographic spread of SARS-CoV-2 variants in various countries can contribute to the identification of the origin of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , Uncertainty
20.
Mater Lett ; 304: 130612, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1404793

ABSTRACT

Early detection is the first step in the fight against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, an efficient, rapid, selective, specific, and inexpensive SARS-CoV-2 diagnostic method is the need of the hour. The reverse transcription-polymerase chain reaction (RT-PCR) technology is massively utilized to detect infection with SARS-CoV-2. However, scientists continue to strive to create enhanced technology while continually developing nanomaterial-enabled biosensing methods that can provide new methodologies, potentially fulfilling the present demand for rapid and early identification of coronavirus disease 2019 (COVID-19) patients. Our review presents a summary of the recent diagnosis of SARS-CoV-2 of COVID-19 pandemic and nanomaterial-available biosensing methods. Although limited research on nanomaterials-based nanosensors has been published, allowing for biosensing approaches for diagnosing SARS-CoV-2, this study highlights nanomaterials that provide an enhanced biosensing strategy and potential processes that lead to COVID-19 diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL